
i)ET_~;RM[N ATION OF TH E EXTERNAL 

TEMPERATURE - FORCE FIELDS FOR EQUAL -STRENGTH 

STRUCTURE ELEMENTS DURING CREEP 

A. F .  N i k i t e n k o  UDC 539.376+ 539.4 

Acquaintance with the analys is  and design of equa l - s t rength  s t ruc tu re  e lements  operat ing under creep  
conditions can be made in [1-4], e.g.,  where  the body geome t ry  (s t ructure element)  is de te rmined  for  given 
loads and t e m p e r a t u r e  such that it would be equally s t rong.  In all the computat ions noted above, the p roces s  
of damageabi l i ty  of the ma te r i a l  is not taken into account,  and only the s t eady-s ta te  c reep  equations a r e  used 
here .  The body is considered heated uniformly.  In cer ta in  cases ,  equal s t rength of a body with a prev ious ly  
ass igned geome t ry  can be rea l ized  during creep by a suitable se lect ion of the external  load and t e m p e r a t u r e  
f ields.  This pape r  is devoted to this quest ion.  The body is considered nonuniformly heated he re .  A s y s t e m  
of equations descr ib ing  all th ree  s tages  of ma te r i a l  c reep  with the cumulat ive damage  p roce s s  taken s imul -  
taneously into account is used. The method of determining the external  loads and t e m p e r a t u r e  is given for  
the a x i s y m m e t r i c  plane s t ra in  case .  The t e m p e r a t u r e  field is he re  considered p lanar  and a x i s y m m e t r i e .  

A body (s tructure element)  heated nonuniformly and loaded by external  fo rces  will  be called optimal 
in longevity (or equally s t rong during creep)  if damageabi l i ty  at all its points p roceeds  in an identical manner ,  
and the re fo re ,  s imul taneously  a f t e r  a p rev ious ly  ass igned t ime  t . .  the damageabi l i ty  p a r a m e t e r  w reaches  its 
cr i t ica l  value of one. It is shown in [5] that  to r ea l i ze  equal s t rength of a body, it is n e c e s s a r y  and sufficient 
to sa t is fy  the equali ty ]32S 2 (q § =C r which it is expedient to Call the opt imal i ty  condition, at each point at 
any t ime  0 < t - < t * * .  In pa r t i cu la r ,  C is independent of the t ime  under s ta t ionary  external  loads and t e m p e r a -  
tu re ,  i .e. ,  is a constant C =[(a + 1)(m + 1)t , . ] -1 ;  g, a ,  m a re  ma te r i a l  cha r ac t e r i s t i c s ,  S 2 is the second inva r i -  
ant of the s t r e s s  t enso r  deviator ,  S 2 = (1/2)sijsij  and the sij  a re  the s t r e s s  t ensor  devia tor  components .  We 
consider  the exper imenta l ly  es tabl i shed t e m p e r a t u r e  dependence of the coefficient  B2to have the fo rm [2]: 
B 2 =Boex p (cO), where  Bo, c a re  m a t e r i a l  constants ,  and O is the t e m p e r a t u r e  which is a function of the co-  
ordinates  of the body points .  Taking this equality into account,  the opt imal i ty  condition fo r  a body loaded by 
s ta t ionary  external  loads is wr i t ten  in the f o r m  

S~ g+l)/~ exp (cO) = CBo 1. (1) 

The s y s t e m  of equations for  an optimal  body in longevity,  that  will desc r ibe  all th ree  s tages  of c reep  and take 
s imul taneously  into aecount the  damageabi l i ty  of the m a t e r i a l ,  is s implif ied cons iderably  and takes  the f o r m  [5]: 

(2) 
~- tt) l/(~+O ~l~=kS~s~ ,  ~. = (n - -  g --  2)/2, i , ] = i , 2 , 3 ,  ( o = ( 1 - -  ,~ 

where  the t ime  functions a r e  

,u --- (i - -  t/t**) I/(m+~)" k k 1 [2 (a + t) (m -~- t) t**t t  m (t .a/ca+l) l-1 , ~ . , - -  ,it) , ; 

and kl, In, n a re  m a t e r i a l  c h a r a c t e r i s t i c s .  Hence the equi l ibr ium equations,  the c reep  s t r a in  ra te  continuity 
equations, and the appropr ia te  boundary conditions should be sat isf ied at each point of the body. 

Let us cons ider  the solution of the plane a x i s y m m e t r i c  p rob lem to de te rmine  the external  loads and 
t e m p e r a t u r e  for  a body of given g e o m e t r y  that  is equally s t rong during c reep .  For  instance,  we cons ider  a 
thin-walled cyl indrical  tube in a plane a x i s y m m e t r i c  t e m p e r a t u r e  field 

0 (r) =C '  + O, In r/a. (3) 

Here  a and r a r e  the inner and running radi i  of the tube. Let us note that (3) is the solution of the hea t - con-  
duction equation for  a cyl indrical  tube under the assumpt ion  of no heat t r a n s f e r a t  the endfaces for  a given con-  
vect ive heat t r a n s f e r  at its inner and outer  cyl indrical  su r faces ,  o r  for  given t e m p e r a t u r e s  on these  su r faces  
[6]. Under the assumpt ion  of this lat-~er, we obtain 

C '  = 0 (a) , ,  O ,  = [ 0  ( b )  - -  0 ( a ) ] / l n  [5~ [3 = b/a 
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tb is the outer  r ad ius  of the tube) .  SuDsti~ctting (3) Lnto the  opt imal i ty  condit ion (1), we obtain the s t r e s s  in- 
t ens i ty  d i s t r ibu t ion  law ove r  the tube radius  : 

S~/'-" = A (a/r) v, (4) 

w h e r e  A = [(e -w 1)(m + i) t **BoexP(cO(a ) ) l -a / (g+~) ;  v =- c O , / ( g  + I). Var ia t ing  the p r e s s u r e  drop |  over  the tube 
rad ius ,  and the ex te rna l  loads  which a r e  a combina t ion  of inner  and ou te r  p r e s s u r e s ,  compl i ance  with condi t ion 
(4) can be ach ieved .  It is hence  evident  that  the boundary  condi t ions  in the t e m p e r a t u r e  and in the  ex te rna l  
loads  cannot  be a r b i t r a r y .  They  mus t  be found o r  a p p r o p r i a t e  cons t r a in t s  mus t  be indicated.  In addit ion to  
condit ion (4), the  s t r e s s  t e n s o r  componen ts  ~r ,  crr should sa t i s fy  the equ i l ib r ium equat ion [6] 

d(rr/dr + (~,. - -  (r~)/r = O, 

while the c reep  s t r a i n  ra te  t e n s o r  componen t s  ~lr, T/r should sa t i s fy  the cont inui ty  equat ion  [6] 

d % / d r  ~- (~1~ - -  ~k)/r = O. (5) 

Let us in t roduce  the s t r e s s  funct ion F(r) which sa t i s f i e s  the equ i l i b r ium equat ion ident ica l ly ,  w h e r e  [6] 

a~ = ( l / r ) ( d F / d r ) ,  a~ = d~F/dr 2. (6) 

As an i l lus t ra t ion ,  let  us examine  the plane s t r a i n  c a s e .  Taking this  into account ,  and subst i tu t ing (6) and (2) 
into the cont inui ty  equat ion (5) with (4) taken  into account ,  we obtain a homogeneous  Eu le r  equat ion in the s t r e s s  
funct ion 

(n - -  g - -  t) d3F/dr  3 - -  ((n - -  g - -  3)/r) d ~F /d r  ~ ~ ((n - -  g - -  3)/r 2) d F / d r  = O. 

Its gene ra l  so lut ion has  the f o r m  

F (r) = 6"1 + C..r 2 4-  C3r h ,  ~'1 = 2 (n - -  g - -  2)/(n - -  g - -  1). (7) 

It is poss ib l e  to  set  C 1 =0 s ince  C t does  not influence the s t r e s s  d i s t r ibu t ion .  The s t r e s s  funct ion (7) should 
sa t i s fy  the  r e l a t ionsh ip  (4) obtained f r o m  the opt imal i ty  condit ion.  Taking (6) into account ,  (4) b e c o m e s  fo r  
the plane s t r a i n  case  

d~F/dr ~ - -  ( t / r ) ( d F / d r )  = 2A(a /r )v .  

Substi tut ing (7) he re  and c o m p a r i n g  left  and r ight  s ides ,  we obtain 

v = 2 / (n  - -  g - -  t), C~ -= - - 2 A a v / v h .  (8) 

T h e r e f o r e ,  the s t r e s s  funct ion (7) f inal ly  b e c o m e s  

F (r) = C2r ~ - -  2 A a V r V l / v v l ,  

and the s t r e s s  componen t s  (6) he re  equal 

a~ = 2C0. - -  (2A/v) (a /r )~ ,  % = 2 C ~ -  (2A(t --v)/v)(a/r) v. O)  

It is seen  f r o m  a c o m p a r i s o n  of the f i r s t  equat ion (8) and the r e l a t ionsh ip  v = c |  +1) that  the p r e s s u r e  drop  
over  the tube rad ius  cannot  be a r b i t r a r y .  It is de t e rmined  in t e r m s  of the m a t e r i a l  c h a r a c t e r i s t i c s  and the 
g e o m e t r i c  s i ze  of the  tube,  i .e . ,  

O(b) - -  O(a) : [2(g -P t ) / c ( n  - -  g -  t)] in ~. (10) 

it fol lows f r o m  (9) that  the su r f a c e  loads  can a l so  not be a r b i t r a r y .  They m u s t  be se lec ted  in such a m a n n e r  
as  to  equi l ib ra te  the radia l  s t r e s s e s ,  say ,  at the inner  and ou te r  s u r f a c e s  of the tube :  

a~(a) - -  2C 2 - -  2 A / v ,  a~(b) = 2C~ - -  2 A / v ~  ~. 

This can  be ach ieved  by loading the tube with the inner  p r e s s u r e  Pl, the ou te r  p r e s s u r e  P2 o r t h e i r  combina t ion .  
In the  l a t t e r  case ,  we have 

P~ - -Pz  = s, ( ~ v  i), r;le s, = 2 A / v ~  v. (11) 

The in tegra t ion  cons tan t  C 2 is obtained equal to  2C 2 = s ,  -P2,  while  the s t r e s s  componen t s  f inal ly take  the f o r m  

c~ = - -  p~. -L s .  [ t  - -  (b/r)~], am = - -  P2 .4- s, [1 --  (1 - -  v) (b,,r)V]. (12) 

The s t r a i n  componen t s  Or, s~  a r e  d e t e r m i n e d  in the f o r m  

% = . e ,  = e .  (r )  0) ( t ) ,  
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a f t e r  (2) has been integrated with respec t  to the t ime ,  and (4) and (12) have been taken into account,  where  
e ,  =0.5klA 2/v {a/r) 2 is the distr ibution of the s t ra ins  er ,  e ~ over  the tube radius  at the t ime of its rup ture .  
It is seen that the s t r e s s  state (12) in an equa l - s t reng th  tu~e during c reep  is steady, while the s t ra in  s ta te  
is the product  of a function of the coordinates  by a function of the t ime .  To rea l ized  equal s t rength of a th ick-  
~valled tube during c reep ,  it is neces sa ry  to give the geomet r i c  s ize of the tube [3 f rom the exploitation condi-  
t ions,  the value of the t e m p e r a t u r e  on its inner su r face ,  and the t ime  to rupture  t ** .  By knowing the c h a r -  
ac te r i s t i c s  of the ma te r i a l  f r o m  which the tube will be fabr icated,  we find A and s .  f r o m  (4) and (11). F rom 
:i0) we de termine  the t e m p e r a t u r e  drop and we the reby  find the t e m p e r a t u r e  on the outer  sur face  of the tube.  
F rom the f i r s t  equation in (11) we calculate  the p r e s s u r e  drop given f i r s t  by the inner or  outer  p r e s s u r e .  

It is in teres t ing to analyze the case  when the tube is heated uniformly,  i .e. ,  |  =0. Here  v =0, and as 
follows f rom (4), the s t r e s s  intensity is independent of the radius  and equals S21/2 "=A, To be graphic ,  we set  
P2 =0 l a t e r .  Pass ing  to the l imi t  as v---0 in (11), we find 

Pl = 2Aln~. 

It is seen  that this re la t ionship  is the analog of the known fo rmula  

p ,  = 2~ In ~, 

which is used extensively  in s t rength computat ions of cyl indrical  tubes and ve s se l s  under p las t ic  deformat ion  
conditions. H e r e  1- s is the yield point of the ma t e r i a l  under pure  shear ,  and A degenera tes  in the l imit  into 
the creep  s t rength of the ma te r i a l  defined for  a fixed t e m p e r a t u r e  on the bas i s  of t** hours.  

It follows f r o m  (12) for  P2 =0 and v ~ 0  that  the s t r e s s  dis t r ibut ion co r re sponds  to an ideally p las t ic  s tate  
with the sole di f ference that  the quantity p ,  in the l a t t e r  is rep laced  by Pl, i .e .  

~--= --(pl/ln[~)ln(b/r), % = (pl/ln [~)[I --  In(b/r)]. 

The case  of the plane s ta te  of s t r e s s  can be considered analogously.  The method of de termining  the 
external  t e m p e r a t u r e - f o r c e  f ields is analogous to that  elucidated above.  In both cases  the boundary condi-  
t ions in the t e m p e r a t u r e  and the load a r e  not a r b i t r a r y .  There fo re ,  they can be difficult to r ea l i ze  technical ly .  
In connection with th is ,  the method elucidated to de te rmine  the external  loads and t e m p e r a t u r e  in o rde r  to be 
able to r ea l i ze  equal s t rength for  specif ic  s t ruc tu re  e lements  during c reep  can be r ecommended  as additional 
in the f i r s t  s tages  of analys is  and design of i t ems .  The solution of this  p rob lem is very  difficult in the mos t  
genera l  case .  
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